Abstract

This paper investigates the use of machine learning models to classify unhealthy online conversations containing one or more forms of subtler abuse, such as hostility, sarcasm, and generalization. We leveraged a public dataset of 44K online comments containing healthy and unhealthy comments labeled with seven forms of subtle toxicity. We were able to distinguish between these comments with a micro F1-score, macro F1-score, and ROC-AUC of 88.76%, 67.98%, and 0.71, respectively. Hostile comments were easier to detect than other types of unhealthy comments. We also conducted a sentiment analysis that revealed that most unhealthy comments were associated with a slight negative sentiment, with hostile comments being the most negative.

© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Sentiment analysis; Artificial neural networks; Convolutional neural networks

1. Introduction

Healthy online conversations occur when posts or comments are made in good faith, are not blatantly abusive or hostile, typically focus on substance and ideas, and generally invite engagement [30]. Conversely, toxic comments are a harmful type of conversation widely found online that are insulting and violent in nature [30]. This kind of toxic conversation has been the primary focus of several previous studies (e.g., [11, 38]); however, many comments that deter people from engaging in online conversations are not necessarily outright abusive but contain subtle forms of abuse. These comments are written not only to engage people but also hurt, antagonize, or humiliate others and are thus referred to as unhealthy conversations [30].

Behaviors such as condescension, “benevolent” stereotyping, and microaggressions are frequently targeted to members of minority social groups [39, 12]. Nadal et al. [24] indicated that such subtle abuse can be as emotionally harmful as outright toxic to some individuals.

* Corresponding author.
E-mail address: shlokgilda@ufl.edu
In this paper, we sought to answer two research questions in the context of unhealthy conversations:

- **RQ1**: What is the general sentiment associated with unhealthy conversations compared to healthy conversations?
- **RQ2**: Can we differentiate between unhealthy and healthy conversations? If so, which type of unhealthy conversation is the most detectable?

Towards these goals, we leveraged a public dataset of 44K online comments, finding that most unhealthy comments contained negative sentiment, and healthy and unhealthy comments were distinguishable from each other with micro and macro F1-scores of nearly 89% and 68%, respectively.

This paper is organized as follows. Section 2 summarizes related work. Section 3 describes the dataset we leveraged in our experiments, as well as our preprocessing procedures. Section 4 details our study’s methodology. Section 5 analyzes our study’s results and how they answer our research questions. Section 6 analyzes our study’s limitations and proposes directions for future work. Section 7 concludes the paper.

2. Related Work

Sentiment classification of social media posts relative to toxicity has been researched extensively over the past years [5, 32, 35, 38]. Most work have primarily focused on algorithmic moderation of toxic comments, which are derogatory and threatening. The importance of community norms in detecting and classifying these subtler forms of abuse has been noted [4, 13, 22, 36], but has not received the same attention in the NLP community.

Although recognized in the larger NLP abuse typology [44], there have been only a few attempts at solving the problems associated with subtle abuse detection, such as a study on the classification of ambivalent sexism using Twitter data [17]. Detecting subtler forms of toxicity requires idiosyncratic knowledge, familiarity with the conversation context, or familiarity with the cultural tropes [2, 26]. It also requires reasoning about the implications of the propositions. Dinakar et al. [9] extract implicit assumptions in statements and use common sense reasoning to identify social norm violations that would be considered an insult. Identification of subtle indicators of unhealthy conversations in online comments is a challenging task due to three main reasons [30]: (i) comments are less extreme and thus have lesser explicit vocabulary; (ii) a remark may be perceived differently based on context or expectations of the reader; and (iii) greater risk of false positives or false negatives. Cultural diversity also plays a vital role in how a comment/remark may be perceived differently [31], thus making the identification of subtle toxicity online more challenging.

From an ML perspective, abusive comments classification research initially began with the application of combining TF-IDF with sentiment and contextual features by Yin et al. [45]. Since then, there have been many advances in the field of toxicity classification. Safi Samghabadi et al. [33] applied a linear SVM to detect invective posts on Ask.fm, a social networking site for people to ask questions. The authors also utilized additional features such as Linguistic Inquiry and Word Count (LIWC; [27]), word2vec [23], paragraph2vec [21], and topic modeling. The authors reported an F1-score of 59% and AUC-ROC of 0.785 using a specific subset of features. Yu et al. [46] proposed a word vector refinement model that could be applied to pre-trained word vectors (e.g., Word2Vec and Glove) to improve the efficiency of sentiment analysis.

3. Data Preparation

The dataset used in this study was made publicly available by Price et al. [30] in October 2020. It contains 44,355 unique comments of 250 characters or less from the Globe and Mail opinion articles sampled from the Simon Fraser University Opinion and Comments Corpus dataset by Kolhatkar et al. [19]. Each comment was coded by at least three annotators with at least one of the following class labels: antagonize, condescending, dismissive, generalization, generalization unfair, healthy, hostile, and sarcastic. The comments were presented in isolation to annotators, without the surrounding context of the news article and other comments, thus possibly reducing bias.
3.1. Preprocessing

First, we removed one empty comment from the dataset and 1,106 other comments which were not assigned to any class label. All comments were then preprocessed (e.g., convert all characters to lower-case, remove HTML tags, etc.) and lemmatized for the feature extraction step. After preprocessing, three comments were deleted as they contained just numbers or special characters. Thus, the total number of comments was 43,245. Most were assigned to a single class label (n = 38,661, 89.4%), while 10.6% (n = 4,584) were associated with two or more labels. The final distribution of the classes is as follows: antagonize (2,066), condescending (2,434), dismissive (1,364), generalization (944), generalization unfair (890), healthy (41,040), hostile (1,130), and sarcastic (1,897).

4. Methodology and Analysis

This section describes our machine learning and deep learning analyses, followed by a description of sentiment analysis of the comments.

4.1. Machine Learning Analysis

In our machine learning experiments of multi-label classification, we considered the following well-known models:

Logistic Regression: We used the Logistic Regression model with TF-IDF vectorized comment texts using only words for tokens (limited to 10K features).

Support Vector Machine (SVM): SVM focuses on a small subset of examples critical to differentiating between class members and non-class members, throwing out the remaining examples [42]. This is a crucial property when analyzing large data sets containing many ambiguous patterns. We used a linear kernel since it is robust to overfitting.

4.2. Deep Learning Analysis

For our experiment, we implemented a CNN-LSTM with pre-trained GloVe [28] word embeddings. Since the comments had a variable length ([3, 250] characters), we fixed the comment length at 250 characters with zero padding. We used Tensorflow [1] to implement our CNN-LSTM deep model (architecture illustrated in Fig. 1). Furthermore, we used binary cross-entropy as loss function because it handles each class as an independent vector (instead of as an 8-dimensional vector). The input to the model was a random number of samples (represented as “?” in Fig. 1), all having a fixed length of 250 characters. Our evaluation metrics were micro and macro F1-scores and AUC-ROC. F1-score is well-suited to handle imbalanced datasets [14] (as in our case). The model was evaluated using 5-fold cross-validation with iterative stratification [37, 41], via the IterativeStratification method from Scikit-Multilearn [40], which gives a well-balanced distribution of evidence of label relations up to a given order.

4.3. Sentiment Analysis

We used NLTK VADER [16] to analyze the polarity of comments. We used VADER’s compound value from the result for analyzing the polarity of the sentiments. For every input text, VADER normalizes the overall sentiment score to fall within −1 (very negative) and +1 (very positive), where scores between (−0.05, 0.05) are labeled as neutral polarity.

![Fig. 1. CNN-LSTM network architecture.](image-url)
5. Results & Discussion

In this paper, we analyzed the granularities of subtle toxic online comments. This section presents our experimental results in detecting the general sentiments associated with healthy and unhealthy online comments (RQ1) as well as recognizing such comments via our deep learning classifier (RQ2). Lastly, we summarize our main takeaways.

5.1. Results

Table 1 exhibits the average micro F1-score, macro F1-score, and ROC-AUC obtained with all tested classifiers. As can be observed, the best classification results were achieved with the CNN-LSTM model, followed by SVM and Logistic Regression.

<table>
<thead>
<tr>
<th>Model</th>
<th>Average Micro F1</th>
<th>Average Macro F1</th>
<th>AUC-ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic Regression</td>
<td>57.54%</td>
<td>48.31%</td>
<td>0.51</td>
</tr>
<tr>
<td>SVM</td>
<td>69.15%</td>
<td>61.29%</td>
<td>0.62</td>
</tr>
<tr>
<td>CNN LSTM Network</td>
<td>88.76%</td>
<td>67.98%</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Our CNN-LSTM model achieved an F1-micro of 88.76%, F1-macro of 67.98%, and ROC-AUC of 0.71 (Table 2). The best result was observed for the class healthy (AUC = 0.9524), followed by hostile (AUC = 0.8141) and antagonize (AUC = 0.7362). Sarcasm yielded the poorest result (AUC = 0.5707). Based on the VADER compound scores, we observed that all types of unhealthy comments except sarcastic and condescending resulted in slight negative scores. The most negative result was observed for the class hostile, while the most positive was sarcastic. Condescending and healthy produced the most neutral sentiment scores.

A similar study of unhealthy conversations [30] employed a pre-trained Bidirectional Encoder Representations from Transformers (BERT) [8] model to classify these conversations and reported a mean AUC-ROC of 0.74. Multiple studies have shown that BERT usually outperforms traditional classifiers in NLP-related tasks, but it also has a high training time. CNN and LSTM based models achieve comparable results while requiring less training time [6, 10, 18, 20]. Due to the ever-changing nature of online conversations, classifiers for unhealthy conversations would have to be updated and trained regularly with newer examples. Thus, the use of resource-intensive transformer-based models would not be appropriate in such situations.

<table>
<thead>
<tr>
<th>Class label</th>
<th>Vader compound score</th>
<th>AUC-ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antagonize</td>
<td>−0.104498</td>
<td>0.7362</td>
</tr>
<tr>
<td>Condescending</td>
<td>−0.035128</td>
<td>0.6702</td>
</tr>
<tr>
<td>Dismissive</td>
<td>−0.081356</td>
<td>0.6311</td>
</tr>
<tr>
<td>Generalization</td>
<td>−0.085851</td>
<td>0.6633</td>
</tr>
<tr>
<td>Generalization Unfair</td>
<td>−0.091320</td>
<td>0.6590</td>
</tr>
<tr>
<td>Healthy</td>
<td>0.035745</td>
<td>0.9524</td>
</tr>
<tr>
<td>Hostile</td>
<td>−0.175975</td>
<td>0.8141</td>
</tr>
<tr>
<td>Sarcastic</td>
<td>0.101285</td>
<td>0.5707</td>
</tr>
<tr>
<td>Mean</td>
<td>N/A</td>
<td>0.7121</td>
</tr>
</tbody>
</table>

5.2. Take-Aways

RQ1: *What is the general sentiment associated with unhealthy conversations compared to healthy conversations?*

Our sentiment analysis revealed that none of the types of comments (i.e., classes) have extremely polarizing sentiment values (Table 2). However, all the classes except healthy, sarcastic, and condescending had an overall slightly negative sentiment, as expected for unhealthy conversations. Hostile comments were the most negative, likely due to
the use of blatantly vulgar and vile language. This could possibly indicate that hostile comments were less subtle in
their hateful content. Antagonizing, dismissive, and generalizing comments all had similar negative sentiment scores
in the range of [−0.1045, −0.0814]. Interestingly, condescending comments scored neutral sentiment (−0.03513). De-
tecting patronizing and condescending language is still an open research problem because, amongst many reasons,
condescension is often shrouded under “flowery words” and can itself fall into seven different categories [3]. Mean-
while, sarcastic comments were notably labeled as positive sentiment (0.1013), even higher than healthy comments
(0.0357); this may be because sarcasm tends to be an ironic remark, veiled in a potentially distracting positive tone.

**RQ2: Can we differentiate unhealthy and healthy conversations? If so, which type of unhealthy conversation is the
most detectable one?**

It was possible to differentiate between unhealthy comments with a micro F1-score, macro F1-score, and ROC-
AUC of 88.76%, 67.98%, and 0.7121, respectively, using the CNN-LSTM model. Our model reported a lower average
macro F1-score compared to the micro F1-score results, which is intuitive given the highly imbalanced dataset—note
that macro F1-score gives the same importance to each class, i.e., this value is low for models that perform poorly on
rare classes, which was the case for CNN-LSTM when analyzing unhealthy conversation classes.

Additionally, Table 2 shows that healthy comments can be differentiated from the remaining classes relatively well
with generally high predictive accuracy ($AUC_{\text{healthy}} = 0.9524$), likely due to the high number of healthy samples in
the dataset. In contrast, despite only 1,130 samples associated with the hostile class, $AUC_{\text{hostile}} = 0.8141$, was the
second-highest AUC achieved by our top performer classifier. Most of the hostile comments have explicit language,
which might make it easier for the classifier to recognize this type of conversation properly. The AUC for antagonizing
comments was the third-highest achieved, at 0.7362, potentially because $n_{\text{antagonize}} = 2,066$ was the second-largest
class, sample size out of the remaining unhealthy conversations categories; antagonize also achieved the second most neg-
ative mean sentiment score (−0.1045), further indicating that there may be characteristics of this class that facilitate
detection from machine learning algorithms.

Detection of sarcasm was the most difficult ($AUC_{\text{sarcasm}} = 0.5707$). There have been numerous studies with similar
issues with the detection of sarcasm, given the difficulty of understanding the nuances and context surrounding sar-
castic texts [29, 47]. The AUC scores for condescending, dismissive, and generalizing comments were only slightly
better (range: [0.6590, 0.6702]), again highlighting the difficulty in detecting such nuanced and subtle language.

6. Limitations & Future Work

Although our analyses yielded promising results, our dataset nonetheless targets a highly specific context (data from
a single Canadian newspaper website), which likely decreases the generalizability of our results. The dataset was also
notably imbalanced, with primarily healthy comments. In future work, we thus aim to expand our experiments on
a more diverse dataset by replicating Price et al.’s [30] coding process using various comments from different news
websites.

One limitation regarding our machine learning analysis is our use of a deep learning architecture (CNN-LSTM),
trained using a relatively small dataset, mainly in terms of unhealthy categories of conversations. In future work, we
plan to increase the number of unhealthy comments to be considered by using data augmentation techniques such as
Generative Adversarial Networks (GAN), which can synthetically generate new comments. NLP data augmentation
techniques could also be used to increase the dataset without requiring significant human supervision, such as simu-
lating keyboard distance error, substituting words according to their synonyms/antonyms, replacing words with their
common spelling mistakes etc. [34]. This may help increase the performance of machine learning classifiers in general.
Lastly, given the challenging nature of unhealthy comments classification tasks, future work should look at specialized
corpora (e.g., [43, 25]) and machine learning models trained at differentiating particular types of conversations, for
example, solely sarcastic comments from non-sarcastic ones (e.g., [7, 15]).

7. Conclusion

This paper analyzed the granularities of subtle toxic online conversations. We leveraged a public dataset containing
healthy and unhealthy comments labeled with seven forms of subtle toxicity: antagonize, condescending, dismissive,
generalization, generalization unfair, hostile and sarcastic. Our machine learning models distinguished between these comments with a micro F1-score, macro F1-score, and AUC-ROC of 88.76%, 67.98%, and 0.71, respectively, using a CNN-LSTM network with pre-trained word embeddings. Our conclusions are two-fold: (i) hostile comments are the most negative (i.e., less subtly toxic) and detectable form of unhealthy online conversation; and (ii) most types of unhealthy comments are associated with a slight negative sentiment. Findings from this work have the potential to inform and advance future work on online moderation tools, which pave the way for safer online environments.

Acknowledgements

This work was supported by the National Science Foundation under Grant No. 2028734, and by the University of Florida Seed Fund award P0175721, and by the Embry-Riddle Aeronautical University award 61632-01/PO# 262143. This material is based upon work supported by (while serving at) the National Science Foundation.

References

